全国服务热线:13373623558

反硝化深床滤池ad型

来源:未知 发布日期:2018-09-30 09:01 浏览:
反硝化深床滤池ad型
 
  产品概述
 
  反硝化深床滤池在全球有超过45年的运行使用时间,此系统能够同时去除TN(NO3-N)、SS和TP,介质采用具有特殊规格和形状的石英砂,砂粒直径2-3mm,废水可与介质表面的生物膜完全接触,即使短暂的短流或超水流冲击都不会对系统产生任何影响。
 
  重力流进水方式:有效去除固体悬浮物,无需附加净水/精滤池。反硝化过程与过滤过程统一,单池完成,事半功倍。
 
  在反硝化过程中,各含氮基团或含氮化合物转变为氮气。含氮泡沫不断增多导致曝气头压力损失,因此,必须周期性排除过多的泡沫。
 
  该技术妥善解决这一问题。该技术能够在不移反应器的条件下消除泡沫堆积现象。
 
  基本参数
 
  处理污水量: 10000m3/h;
 
  臭氧用量: 1g/h;
 
  空气量: 1m3/min;
 
  贮气罐容积: 1m3;
 
  流量计规格: 1m3/h;
 
  出水管口径: 1mm;
 
  进水管口径: 1mm;
 
  曝气机功率: 1kw;
 
  水泵功率: 1kw;
 
  规格: sd;
 
  材质: 不锈钢;
 
  额定电压: 380V;
 
  额定功率: 10W;
 
  上市时间: 2018;
 
  外形尺寸: 230*350*275mm;
 
  销售方式: 品牌经销;
 
  扬程: 30m;
 
  发货期限: 90天之内 ;
 
  型号: ad ;
 
  加工定制: 是 ;
 
  打样周期: 5-6天 ;
 
  质量认证: ISO9001;
 
反硝化深床滤池ad型
 
  主要工作原理:在过滤器底部注入反冲洗水,历时数秒钟。该过程可加速滤池中氮气的释放,减少水头损失,提高系统效率,延长反冲洗周期。过程简单易行。通常,反硝化/过滤系统在进行必要的逆洗前,可以进行4-5次氮气的释放, 逆洗频率及时间的选择主要取决于NO3-N的分解量。
 
  碳源补充:在重复脱氮的过程中,由于水体中碳的含量有限,因此须持续补充碳,以保证生化效果。常用添加剂有:甲醇、发酵残渣及普糖等,其中甲醇最常被使用。
 
  优点:
 
  单池完成反硝化过程与过滤过程,可同时去除SS、TP和TN;
 
  与BNR系统(生物营养去除系统)结合使用,有效降低成本同时提高处理效率;
 
  完全达到下列高级出水水质标准:NO3-N≤1mg/l,TN≤3mg/l,NTU≤2,SS≤5mg/l。
 
  反硝化深床滤池布置布水布气块(T型滤砖)
 
  具有脱氮、除磷、去除悬浮物等多种功能
 
  每去除1mg/l N03-N 甲醇耗量< 3 mg/l
 
  灵活转换运行模式
 
  具有良好的生物脱氮功能,N03-N  < 1.0 mg/L(TN  < 3.0 mg/L )
 
  具有良好的除磷功能, TP< 0.3 mg/L
 
  对悬浮物具有良好的去除能力,SS < 5 mg/L ,浊度< 2 NTU
 
反硝化深床滤池ad型
 
  滤床终生免维护,淘汰了长柄滤头和滤板技术
 
  无滤料流失和损失,终生无需添加或更换
 
  反冲水量少,通常为 2%-4%
 
  反硝化深床滤池的应用性
 
  反硝化深床滤池设置在二沉池出水之后,可与其它处理单元完美结合,同步去除亚硝酸盐氮和硝酸盐氮(NOx-N)、总磷(TP)和悬浮固体颗粒(SS), 使出水满足《城镇污水处理厂污染物排放标准》一级A标准的要求。
 
  反硝化深床滤池:反硝化深床滤池特别适用于市政污水厂的提标改造,例如:从一级B标准向一级A标准的提升,从一级A标准地标的提升。反硝化深床滤池设置在沉淀池之后,可等于“生物滤池+V型滤池(或滤布滤池)”,实现一池两用。

  利用硫组分进行自养反硝化是一个利用无机还原态的硫(S2-、单质硫S、S2O32-、S4O62-、SO32-)作为电子供体、硝酸盐为电子受体的生物反硝化过程。因为单质硫的价格远低于甲醇和乙酸等碳源价格,且硫组分含量最高,可减少反硝化的运行成本,因而人们对单质硫型自养反硝化过程的研究最深入。每传递1mol的电子,单质硫型反硝化产生的能量为91.15kJ,远低于甲醇反硝化释放的能量(109.18kJ/mol),而微生物生长所需能量是相同的,因此单质硫型反硝化的污泥产率低于甲醇型反硝化,污泥处置费用低。
 
  负责硫自养反硝化的细菌主要为Thiobacillusdenifications和/或Thiomicrospiradenitrificans。DO、pH、硫颗粒粒径、S/N比、NO3-浓度、营养物和HRT是影响单质硫型自养反硝化速率的主要因素。单质硫的反硝化产物中的H+能导致亚硝酸盐的积累和硝酸盐去除速率的下降,因此需投加一定量的CaCO3维持反应体系的pH和碱度。而Thiobacillusdenifications世代期长,容易被洗出反应器,因此通常采用截留微生物效能高的单质硫-石灰石堆床作为单质硫自养反硝化反应器。单质硫可以作为Thiobacillusdenifications生物膜的载体,而石灰石不仅为自养反硝化菌提供碱度,也提供无机碳源。J.L.Campos等研究发现,在S、N质量比为3.70或6.67时,会出现NO2-的瞬间积累现象;在S、N质量比为1.16或2.24的条件下,NO2-是自养反硝化的主要终产物。这是因为NO3-的比转化速率快于NO2-的比转化速率,因此NO3-浓度较高或停留时间过短时容易导致NO2-的积累,进而自养反硝化受到明显抑制。
 
  R.Sierra-Alvareza等研究了以单质硫-石灰石为填料的生物反应器的脱氮性能,结果表明其氮负荷高达560g/(m3-d),氮去除率95.9%,表现出较高的脱氮能力。其批式实验发现,反硝化的速率与单质硫的接触面积有关,为26.4mmol/(m2-d)。A.Koenig等认为,因单质硫的可溶性较差,严重限制了其向微生物中传递,因而单质硫的溶解速率是单质硫型自养反硝化的限制因子,反应速率与硫粒粒径和表面积有关。因此,硫自养反硝化工艺应用于工业含硝酸盐废水的处理时,宜采用粒径较细的单质硫以提供足够的比表面积进行传质,必要时可选择溶解态的单质硫。由于SO42-是单质硫型自养反硝化的另一重要产物(见表1),若尾水直排地表水则会导致二次污染,因此应慎重采用该工艺;若尾水能直排海洋,则没有二次污染风险(海洋中SO42-的质量浓度为2.7mg/L左右)。因此在废水可直排海洋的沿海地区,可以采用单质硫型自养反硝化工艺来处理含硝酸盐的工业废水。
 
反硝化深床滤池ad型
 
  与传统的生物脱氮工艺相比,A/O系统不必投加外碳源,可充分利用原污水中的有机物作碳源进行反硝化,同时达到降低BOD5和脱氮的目的;A/O系统中缺氧反硝化段设在好氧硝化段之前,因而当原水中碱度不足时,可利用反硝化过程中产生的碱度来补充硝化过程中对碱度的消耗。此外,A/O工艺中只有一个污泥回流系统,混合菌群交替处于缺氧和好氧状态及有机物浓度高和低的条件,有利于改善污泥的沉降性能及控制污泥的膨胀。反硝化菌碳源的供给可用外加碳源的方法(如传统脱氮工艺)、利用原废水中的有机碳(如前置反硝化工艺等)的方法来实现。
 
  反硝化的碳源可分为三类:第一类为外加碳源,如甲醇、乙醇、葡萄糖、淀粉、蛋白质等,但以甲醇为主;第二类为原废水中的有机碳;第三类为细胞物质,细菌利用细胞成分进行内源反硝化,但反硝化速率最慢。当原废水中的BOD5与TKN(总凯氏氮)之比在5~8时,BOD5与TK(总氮)之比大于3~5时,可认为碳源充足。如需外加碳源,多采用甲醇,因甲醇被分解后产物为CO2、H2O,不留任何难降解的产物。

  反硝化
 
  在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为:
 
  6NO3-十2CH3OH→6NO2-十2CO2十4H2O
 
  6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-
 
  综合反应式为:
 
  6NO3-+5CH3OH→5CO2+3N2+7H2O+6OH-
 
  由上可见,在生物反硝化过程中,不仅可使NO2--N、NO3--N被还原,而且还可使有机物氧化分解。
 
  1mg的硝酸盐氮理论消耗2。87mg的BOD5,一般4mg的BOD5即可满足反硝化的需求
 
  影响反硝化的主要因素:
 
  (1)温度 温度对反硝化的影响比对其它废水生物处理过程要大些。一般,以维持20~40℃为宜。苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;
 
  (2)pH值 反硝化过程的pH值控制在7。0~8。0;
 
  (3)溶解氧 氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在0。5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);
 
  (4)有机碳源 当废水中含足够的有机碳源,BOD5/TKN〉(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即“内碳源”,但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
 
  产品实拍
 
反硝化深床滤池ad型